- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Ma, Shi-Yuan (3)
-
Wang, Tianyu (3)
-
McMahon, Peter L. (2)
-
Onodera, Tatsuhiro (2)
-
Wright, Logan G. (2)
-
Anderson, Maxwell G. (1)
-
Laydevant, Jérémie (1)
-
McMahon, Peter L (1)
-
Richard, Brian C. (1)
-
Sohoni, Mandar M. (1)
-
Stein, Martin M. (1)
-
Wright, Logan G (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Energy efficiency in computation is ultimately limited by noise, with quantum limits setting the fundamental noise floor. Analog physical neural networks hold promise for improved energy efficiency compared to digital electronic neural networks. However, they are typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10), and the noise can be treated as a perturbation. We study optical neural networks where all layers except the last are operated in the limit that each neuron can be activated by just a single photon, and as a result the noise on neuron activations is no longer merely perturbative. We show that by using a physics-based probabilistic model of the neuron activations in training, it is possible to perform accurate machine-learning inference in spite of the extremely high shot noise (SNR ~ 1). We experimentally demonstrated MNIST handwritten-digit classification with a test accuracy of 98% using an optical neural network with a hidden layer operating in the single-photon regime; the optical energy used to perform the classification corresponds to just 0.038 photons per multiply-accumulate (MAC) operation. Our physics-aware stochastic training approach might also prove useful with non-optical ultra-low-power hardware.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Wang, Tianyu; Sohoni, Mandar M.; Wright, Logan G.; Stein, Martin M.; Ma, Shi-Yuan; Onodera, Tatsuhiro; Anderson, Maxwell G.; McMahon, Peter L. (, Nature Photonics)
-
Wang, Tianyu; Ma, Shi-Yuan; Wright, Logan G.; Onodera, Tatsuhiro; Richard, Brian C.; McMahon, Peter L. (, Nature Communications)Abstract Deep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (~2.5 × 10 −19 J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration—noise reduction from the accumulation of scalar multiplications in dot-product sums—is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies.more » « less
An official website of the United States government
